podcast quotes-left quotes-right search menu arrow-up arrow-up2 google-plus3 facebook2 instagram telegram twitter vk youtube android rss2

Что такое искусственный интеллект сегодня?

Содержание

  1. Введение
  2. Какие типы ИИ есть сегодня?
  3. Нужно ли бояться ИИ?
  4. Почему искусственный интеллект – это благо?
  5. Заключение

Введение

Ища истоки идей искусственного интеллекта, можно привести множество фактов и мифов. Начиная от древнегреческого робота Талоса, созданного Зевсом для охраны острова Крит, или Чарльза Бэббиджа с Адой Лавлейс и их Аналитическим Двигателем середины 19 века и заканчивая идеями Мински и МакКартни, создавших современное определение ИИ как любого действия, выполненного программой или машиной, про которое, если бы его выполнял человек, мы бы сказали, что ему нужно проявить интеллект или смекалку.

Мне же истоки зарождения ИИ видятся в книге Галилео Галилея 1683 года «Беседы и математические доказательства двух новых наук».

В этой книге Галилей, в частности, написал, что всё в мире, в том числе природные явления, может быть выражено языком математики. Получается, что для любого явления или действия можно придумать алгоритм. Таким образом, искусственный интеллект – это набор алгоритмов на все случаи жизни. А одной из главных способностей ИИ станет умение на основе имеющихся данных самостоятельно синтезировать новые алгоритмы.

В усеченном виде это уже возможно. Например, AlphaGo от Google, проанализировав базу данных из 30 миллионов ходов и потренировавшись с самим собой несколько тысяч раз, смог победить лучшего игрока в мире по игре в го.

А IBM натаскивает свой суперкомпьютер Watson на помощь врачам. Задача – научить компьютер искать ответы на вопросы, заданные естественным языком, то есть Watson учится проводить медицинский опрос. Своего рода игра в дифференциальную диагностику, только компьютер вместо доктора Хауса. Собственно, на этом закончим с историей. В головах обывателей искусственный интеллект – это Джарвис из комиксов про «Железного человека», Терминатор или, на худой конец, Робокоп (в фильме именно добавленный ИИ помогает киборгу очень быстро и точно стрелять). Такой вариант, конечно, имеет место быть, но давайте начнём с того, что доступно сегодня.

Какие типы ИИ есть сегодня?

В целом, все типы ИИ можно разделить на две категории – слабый, или ограниченный ИИ и общий, или сильный ИИ.

Слабый ИИ

Собственно, названия говорят сами за себя. ИИ сегодня представляют собой первый тип – ограниченный, то есть интеллект заточен на определенные задачи. Например, когда Samsung обещает, что к 2020 году каждое его устройство будет обладать ИИ, то подразумевается именно ограниченный вариант. Примерами могут служить Siri или Алиса, которые умеют делать ровно то, что в них запрограммировали. Алиса даже так и отвечает, когда чего-то не знает или не умеет: «Программист обещал обучить меня этому позже».

К этому же типу относятся Google и Yandex карты, анализирующие пробки и прокладывающие маршруты, фотокамеры, распознающие сцены, интеллектуальная печь, самостоятельно регулирующая уровень жара, и робот-пылесос, который, как ему ни объясняй, умеет только пылесосить, а тапочки не подаст.

И пока что это ограниченный ИИ – это единственный тип искусственного интеллекта, который освоило человечество. Слабый ИИ можно разделить по ключевым задачам, над которыми и работают специалисты сегодня. Это:

  • распознавание речи;
  • компьютерное зрение;
  • обработка естественного языка;
  • поиск паттернов, или анализ данных;
  • робототехника.

Добиться решения этих задач, то есть научить некий ИИ понимать ваши слова и узнавать картинки, можно двумя способами.

  1. Символьный подход.

    Такой подход был ведущим начиная с конца 40-х и заканчивая началом 90-х. Метод основывается на том, что считалось, что лучший способ «обучить» ИИ – это скормить ему как можно больше знаний. Например, если говорить в контексте медицины, то в ИИ загружают всевозможные учебники и базы знаний. И ответы ИИ ищет только на основе имеющейся информации, обрабатывая знания лишь по тем правилам, которые создал программист.

    Соответственно, такой тип ИИ хорош для решения статических проблем. Например, в него можно загрузить все учебники по русскому языку, и ИИ сможет хорошо проверять сочинения, находя орфографические, пунктуационные ошибки, а ориентируясь на орфоэпические нормы, даже сможет вычленять речевые ошибки и недочеты. Однако будет делать это, только основываясь на правилах, то есть не понимая контекст, а вычленяя правильный порядок слов и написание.

    Ещё один пример – это машинный перевод. Символьно-обученный ИИ вооружен всевозможными словарями и разговорниками. И если предложенная ему на перевод фраза есть в одном из них, то он её переведёт хорошо, а если нет, то просто подставит слова, предлоги и структуру предложения на основе заложенных правил.

  2. Машинное обучение, или несимвольный ИИ.

    В отличие от символьного, этот вариант обучения подразумевает, что искусственному интеллекту показали, как решать определенную проблему, после чего пустили в свободное плавание. Так действуют нейронные сети. Помню, читал про пример, где программист подключил ИИ к управлению поливалками и научил отгонять водой соседскую кошку, которая повадилась ходить в туалет на газон. Программист показал ИИ множество фотографий с кошками, после чего у искусственного интеллекта выработался рефлекс включать поливалку каждый раз, когда ему казалось, что он видит нечто, похожее на кошку. Система не всегда работала гладко. Кажется, она как-то включилась, когда ИИ принял тень на асфальте за кошку.

    Если же говорить про пример с переводом, то натренированный ИИ может попытаться осознать контекст фразы и подставить в переводе не первое отвечающее базовым требованиям слово, а то, которое, на его взгляд, лучше отражает стиль, эмоцию, сленг или что-то ещё, на чём его тренировали.

Сегодня большинство программистов предпочитают использовать второй тип – машинное обучение, потому он умеет, если так можно выразиться, импровизировать. Например, если автономную машину натренировать по первому типу, то она будет ездить по правилам, но если на дороге возникнет непредвиденная ситуация, то машина окажется в затруднении. А автомобиль, натренированный машинным обучением, может действовать по обстоятельствам, синтезируя идеи на основе скормленной ранее информации.

Тут же возникает и проблема. Одна из ключевых важных особенностей символьного ИИ в том, что система всегда может объяснить, почему приняла то или иное решение. А вот в случае с машинным обучением всё непросто. Именно поэтому те же UBER или Tesla долго разбираются, пытаясь понять, почему их машины приняли то или иное решение, повлекшее аварию.

Однако для тех же автомобилей символьное обучение не подходит, так как все правила для ИИ заносят вручную, то есть, условно говоря, нужно прописать все варианты действия для автомобиля – на дорогу выбежал человек, выкатилась коляска, вылетела коробка и т.д. Что-то забыл прописать, и неожиданно выяснилось, что машина сбила лося, потому что про него ничего не было сказано в своде правил, в то время как машинный ИИ сможет догадаться, что нельзя сбивать всех четвероногих.

У слабого ИИ, как видите, несмотря на его ограниченность, множество способов применения – это и умная техника, и самостоятельные автомобили, и обработка данных с попытками предсказаний будущего. К слову, Google Duplex, умеющий заказывать столики в ресторане, — это тоже ограниченный ИИ, так как умеет он ровно то, чему его обучили.

Сильный ИИ (самостоятельный)

Здесь уже начинается область гипотез, так как ничего подобного человечество ещё не видело. Возможно, только в недрах Google или IBM живёт что-то полуразумное. На последней конференции Google I/O очень умная китайская женщина Фей Фей Ли (Fei Fei Li), самая главная в департаменте Машинного обучения и Искусственного Интеллекта в Google Cloud, сказала, что, хоть и прошло уже более 60 лет с момента исследований в области ИИ, но наука до сих пор находится на начальном этапе, и пока можно говорить только о том, чтобы достичь мастерства в разработках ограниченного ИИ.

Однако предлагаю немного пофантазировать про сильный ИИ и попробовать определить, что он из себя должен представлять и что уметь. Считается, что сильный ИИ – это по уму как среднестатистический человек, то есть в теории он может решить любую проблему. Хороший пример такого ИИ – это Терминатор или типичный недоброжелатель в комментариях на сайте Mobile-Review.com. И если перед первым стояла задача любыми способами уничтожить Джона Коннора, то второй жаждет максимальной энтропии. Терминатор, если закрыто метро, поедет убивать Джона Коннора на автобусе, а если сломается автобус, то пойдет пешком или вызовет такси, а недоброжелатель будет писать, что всё реклама, что автор ничего не понимает, будет пытаться заниматься демагогией и софизмами. Собственно, больше всего разжиться сильным ИИ мечтают правительства по всему миру для ведения военных действий и саботажа выборов в США армией компьютерных ботов-троллей.

В Google говорят, что если всё будет хорошо, то к 2050 году, возможно, произойдёт прорыв и появится первый сильный ИИ.

Основная слабость такого ИИ заключается в том, что он, несмотря на все свои способности, по-прежнему остаётся относительно недалеким, как и среднестатистический человек, но, в отличие от человека, сильный ИИ всё помнит и лучше ориентируется в поисках и обработке информации.

Суперсильный интеллект

Это уже совсем из области фантастики. Например, к просто сильному интеллекту можно отнести и Пятницу/Джарвиса из «Железного человека».

Если помните, то в одном из фильмов главный герой Тони Старк пытался изобрести какой-то новый нетоксичный источник энергии, чтоб поместить его себе в грудь. Джарвис ему ассистировал, но решить задачу мог всё равно только Тони Старк, потому что у ИИ не хватало «соображалки». Суперсильный интеллект сможет самостоятельно решать даже самые сложные задачи. Именно ему человечество задаст вопрос, на который он ответит «42», а потом суперсильный ИИ поместит всех людей в чаны с жидкостями и создаст феномен избранного (это не белиберда, а аллюзии на книгу «Автостопом по Галактике» и фильм «Матрица»).

К содержанию >>>

Нужно ли бояться ИИ?

Несмотря на все фантастические фильмы, опасаться не нужно, по крайней мере, до появления последнего типа ИИ. Однако нужно бояться людей, которые занимаются разработками, так как вследствие ошибки или сознательно в тот же ограниченный ИИ может быть заложено правило «убить всех человеков» вместо «учить всех человеков». А дальше для ИИ дело за малым – лишь уточнить в словаре значения всех слов и приступить к делу.

Однако развитие даже ограниченного ИИ уже привело и ещё приведет к множеству проблем в современном обществе.

Проблема первая

Одна из проблем – это разрушение традиционной карьерной лестницы, так как развитие ИИ приводит к отказу от рабочих мест, требующих среднего уровня квалификации. Поясню подробнее. Нужна дешевая рабочая сила, чтобы заносить данные в компьютер, так как, условно говоря, распознавать «капчу» человек по-прежнему умеет лучше. Также нужны и те, кто будет принимать решения на основе обработанных компьютером данных. А вот рядовые аналитики уже не нужны, потому что они анализируют и изучают данные на основе выученных алгоритмов. Например, в мою бытность аналитиком я имел на вооружении 42 различных варианта обработки данных для создания прогнозов. Все эти варианты были упорядочены в аккуратную презентацию, к которой я регулярно обращался, чтобы прикинуть, какой способ лучше использовать в той или иной ситуации. Замена меня на ИИ представляется логичной и обоснованной, так как он с задачами прогнозирования справится гораздо быстрее. Соответственно, получается разрыв, когда отпадает традиционная карьерная лестница от младшего аналитика до руководителя, так как в нижней точке карьеры практически нет маневра для демонстрации интеллекта.

Проблема вторая

Также из-за ИИ постепенно произойдет отказ от базовых профессий, которые можно алгоритмизировать, то есть свести к простым действиям. Что-то подобное сейчас можно наблюдать в «Ашанах» и «Лентах», где происходит постепенная замена кассиров на аппараты самообслуживания, а также одного сотрудника, помогающего решить возникающие проблемы, и охранника, следящего за порядком. В дальнейшем охранника заменят камеры наблюдения, следящие за порядком. Получается, что произойдет снижение ценности людей.

Профессии, которые с большой долей вероятности заменит ИИ: почтальоны, ювелиры, лесорубы, фермеры, рабочие на заводах, страховщики

Прочитал, что Сан-Франциско в какой-то степени может служить иллюстрацией данной проблемы. Этот город в США облюбовала технологическая элита. Соответственно, экономика города направлена на удовлетворение потребностей элиты, а вот люди, которые не имеют отношения к экономике технологий, испытывают колоссальные проблемы. Они зарабатывают гораздо меньше, а все ценники в городе выставлены как для IT-стартаперов. Обычные люди не могут потянуть такие расходы, поэтому или переезжают, или пополняют и без того огромную армию бомжей.

Однако здесь есть ключевая особенность, которая сохранит некоторые профессии. Искусственному интеллекту для работы нужны созданные условия. Например, робот-пылесос умеет ездить только по гладкому полу и преодолевать небольшие неровности. Соответственно, многие базовые профессии смогут продержаться до тех пор, пока будет чересчур сложно и дорого создавать их искусственную замену. Например, в помещении, где много дверей, роботу-уборщику нужно иметь или манипуляторы, чтобы крутить дверные ручки, или нужно, чтоб все двери открывались автоматически. И то и то достаточно дорого, а вот у приезжего Сархата из Средней Азии есть руки и мозгов хватает, чтоб управиться со шваброй и дверной ручкой, но нет регистрации и сниженные требования к зарплате.

Проблема третья

Даже ограниченный ИИ сильно простимулировал такое явление, как фриланс. Платформы по подбору и найму удаленных сотрудников с каждым годом процветают всё больше и больше. Например, по последним статистическим данным, в США, первой экономике мира, 55 миллионов человек работает на фрилансе.

И это в текущем поколении, обратите внимание на иллюстрацию. Подрастающая рабочая сила не любит сидеть в офисе. Соответственно, произойдет сдвиг в организации труда. Компании столкнутся с проблемами по набору и удержанию сотрудников, ведь зачем посвящать жизнь одной компании, когда ты доступен онлайн и можно искать работу по всему миру.

Проблема четвертая

Достаточно серьезная проблема – это социальное неравенство, которое уже упомянул в проблеме номер 2. Оно будет усугубляться. Полагаю, из статьи вы догадались, что чтобы быть успешным в новом мире, нужно быть сообразительным и на «ты» с современными технологиями. Не секрет, что у бедных людей хуже с доступом к образованию. Соответственно, бедные не смогут вырваться на новый уровень, так как у них попросту не будет шанса научиться чему-то полезному, так как, чтобы хорошо думать, нужны годы усиленных тренировок, а где их взять, когда нужно искать еду.

Новому обществу нужна или дешевая рабочая сила, или интеллектуалы, принимающие решения.

Проблема пятая

Её можно сформулировать кратко – кто у руля? На людей, занимающихся разработкой систем ИИ, будет накладываться особая ответственность, так как они обучают ИИ, на основе каких данных ИИ будет принимать решения. Будут это законы робототехники от Азимова или иные правила, защищающие определенную прослойку людей.

К содержанию >>>

Почему искусственный интеллект – это благо?

Перечисленные выше проблемы выглядят в какой-то степени пугающе, но ИИ – это обоюдоострый меч, который может и помогать.

Благо 1

Искусственный интеллект послужит мощным толчком для развития многих сфер. Хороший пример – это медицина. Сегодня в 21 веке врачи продолжают лечить так же, как и сотню лет назад. Они зубрят учебники. Это плохой вариант, так как ни один врач не может помнить наизусть все симптомы всех болезней. Последствия таких ошибок могут быть фатальными. Местный врач до последнего уверяла, что причины недомогания моей матери заключаются в простуде и усталости, так как все основные симптомы налицо. И только когда уже было поздно, прозвучал правильный диагноз – острый лейкоз, заболевание, которое достаточно сложно распознать. И в данной ситуации наличие ИИ, который помнит все болезни и симптомы и который никогда не устаёт, было бы выходом.

Такие же сдвиги могут произойти в области права, где юристам и судьям нужно держать в памяти все законы, прецеденты и множество доказательств.

Благо 2

ИИ поможет создать персонализированный опыт. Лучше всего это утверждение можно проиллюстрировать на примере обучения. Сегодня учителя перегружены, и они физически не могут уделить внимание всем ученикам. А ведь у каждого свой темп освоения нового материала. Системы обучения, основанные на ИИ, следят за скоростью обучения, видят, хорошо или плохо ученик запоминает материал, читает внимательно или отвлекается. На основе этого выстраивается индивидуальный темп обучения и происходит подбор упражнений для закрепления.

При этом есть факт, что людям проще постигать новый материал с помощью ИИ, так как в таком случае значительно снижается страх ошибки. Могу согласиться с этим утверждением. Морально легче получить возмущенный бип от компьютера, что пример решен неверно, чем выдержать взгляд Ольги Степановны, моего преподавателя по математике.

ИИ сможет уделять равное внимание всем людям. Сюда относятся все области, от образования и медицины до подбора модного имиджа (в соответствии с типом фигуры, формой лица и трендами сезона) и тренировок в спортзале.

Благо 3

Уже сегодня наш мир переполнен информацией. Любые данные собираются отовсюду, начиная от погодных условий и заканчивая тем, сколько шагов прошел человек.

Искусственный интеллект с доступом к большим данным сможет анализировать эти данные и искать корреляцию, как влияет количество шагов на здоровье, но не абстрактно, а с учетом определенной погоды. Анализ перемещения пассажиропотоков поможет снизить загруженность, уменьшить количество транспортных коллапсов в часы пик. Короче говоря, те данные, которые можно проанализировать, будут проанализированы, и ИИ представит свои выводы.

Заключение

Сегодня искусственный интеллект продемонстрировал, что неплохо умеет решать только те задачи, которым его обучили, и даже быть лучше в них, чем обычные люди. Смартфон легко обыграет гроссмейстера даже без ферзя, японский ИИ, написавший небольшой роман, прошел в финал литературного конкурса, а его собратья пишут и исполняют неплохую музыку.

Однако, к сожалению, ИИ до сих пор находится в стадии зарождения. Он умеет только то, чему его научили – проанализировать множество литературных или музыкальных произведений и синтезировать что-то своё или запомнить миллионы ходов и выбирать лучший.

Главные проблемы, стоящие на пути развития ограниченного ИИ, заключаются в отсутствии универсальных алгоритмов познания окружающего мира и инфраструктуры (для сбора данных нужно множество датчиков, для беспилотных авто –дороги с идеальной разметкой, для понимания запросов хозяина голосовым ассистентам нужны более качественные алгоритмы).

Для появления же сильного искусственного интеллекта нужны принципиально иные вычислительные мощности и алгоритмы обработки информации, имитирующие то, что у людей называется интуицией. Вероятно, в ближайшем будущем мы будем наблюдать различные варианты ограниченного ИИ с заложенными алгоритмами поведения на всевозможные условия.

К содержанию >>>

Владимир Нимин (vminin@mobile-review.com)

Опубликовано — 22 августа 2018 г.

Мы в социальных сетях:

Есть, что добавить?! Пишите... eldar@mobile-review.com

 

Новости:

24.09.2018 Huawei заявила о превосходстве своих процессоров над чипами Apple

24.09.2018 Операционной системе Android исполнилось 10 лет

24.09.2018 Samsung может выпустить смартфон с четырьмя камерами в одном модуле

Hit

24.09.2018 Видео на канале: Обзор фотоаппарата Sony RX100 VI

24.09.2018 Раскрыты технические характеристики двухэкранного смартфона Nubia Z18s

24.09.2018 Состоялся российский релиз нового смартфона Huawei Mate 20 lite

24.09.2018 Слухи: Facebook на этой неделе представит несколько устройств для видеочатов

24.09.2018 Обнаружена активность мобильного банковского троянца на iOS устройствах

24.09.2018 «Яндекс.Маркет» выводит на российский рынок крупнейший турецкий маркетплейс

21.09.2018 Стриминг обеспечивает 3/4 выручки RIAA

21.09.2018 Huawei использует очереди за iPhone для своего пиара

21.09.2018 Рендерные изоражения Pixelbook от Google

21.09.2018 Amazon представила микроволновую печь AmazonBasics с поддержкой голосового помощника Alexa

21.09.2018 ESET обнаружила фальшивые банковские приложения в Google Play

21.09.2018 Новые беспроводные наушники Huawei могут заряжаться без проводов от смартфона

21.09.2018 МТС запустил Wi-Fi Calling в Санкт-Петербурге и Ленинградской области

21.09.2018 «Мегафон» и «Ростелеком» испытали связь пятого поколения связи на частотах 26 ГГц

20.09.2018 40-Вт зарядка Huawei близка к выходу на рынок

20.09.2018 Google Home Mini - самая популярная «умная» колонка

20.09.2018 GoPro представила 7-е поколение экшн-камер Hero

Hit

20.09.2018 Видео на канале: Блиц #25. Ошибки в чистом Android на примере Nokia 3.1 и AndroidOne

20.09.2018 Canon PowerShot SX70 HS – камера с несъемным объективом и мощным 65-кратным увеличением

20.09.2018 Билайн и Huawei протестировали LTE 900

20.09.2018 Xiaomi представила Mi 8 Pro и Mi 8 Lite

20.09.2018 Правительство хочет заставить предустанавливать российские антивирусы на все импортируемые компьютеры

Подписка
 
© Mobile-review.com, 2002-2018. All rights reserved.